Search results

Search for "mechanical resonator" in Full Text gives 5 result(s) in Beilstein Journal of Nanotechnology.

Design, fabrication, and characterization of kinetic-inductive force sensors for scanning probe applications

  • August K. Roos,
  • Ermes Scarano,
  • Elisabet K. Arvidsson,
  • Erik Holmgren and
  • David B. Haviland

Beilstein J. Nanotechnol. 2024, 15, 242–255, doi:10.3762/bjnano.15.23

Graphical Abstract
  • (KIMEC) sensors. A force sensor designed specifically for scanning probe microscopy must have a sharp tip that is readily positioned and scanned over a surface. We operate the sensor near a mechanical resonance with a high quality factor Q for enhanced responsivity to force. The mechanical resonator is a
  • gradient during oscillation. Although many types of resonators could fulfill these requirements in principle, it is hard to beat the microcantilever for ease of fabrication. To sense force on the tip we need to measure the motion of the mechanical resonator, detecting its deflection from mechanical
  • more detail. Sensor design We view the sensors as composed of the cantilever, which transduces force to displacement (transducer), and the microwave resonator, which detects the displacement (detector). For this reason, we separately discuss the mechanical resonator, the microwave resonator, and their
PDF
Album
Full Research Paper
Published 15 Feb 2024

Intermodal coupling spectroscopy of mechanical modes in microcantilevers

  • Ioan Ignat,
  • Bernhard Schuster,
  • Jonas Hafner,
  • MinHee Kwon,
  • Daniel Platz and
  • Ulrich Schmid

Beilstein J. Nanotechnol. 2023, 14, 123–132, doi:10.3762/bjnano.14.13

Graphical Abstract
  • expertise. For inspiration, we turn to quantum optomechanics and its sister field of quantum electromechanics, as they both report outstanding signal-to-noise ratios [14]. In the former, a reflective mechanical resonator constitutes half of a Fabry–Pérot cavity, converting photons to phonons and vice versa
  • coupling was proven in doubly clamped beams, square membranes and circular membranes [18][26][27][28][29][30][31]. For atomic force microscopy imaging, a slight angle between the sensing mechanical resonator and the sample of interest is required, ensuring that the only contact occurs between the sample
  • surface and the tip of the mechanical resonator. This promotes cantilevers as the chosen geometry for this task, as building a clamped beam or a square membrane at the edge of a chip is considerably more challenging. In the following, we will explore intermodal coupling in a microcantilever as an
PDF
Album
Full Research Paper
Published 19 Jan 2023

The patterning toolbox FIB-o-mat: Exploiting the full potential of focused helium ions for nanofabrication

  • Victor Deinhart,
  • Lisa-Marie Kern,
  • Jan N. Kirchhof,
  • Sabrina Juergensen,
  • Joris Sturm,
  • Enno Krauss,
  • Thorsten Feichtner,
  • Sviatoslav Kovalchuk,
  • Michael Schneider,
  • Dieter Engel,
  • Bastian Pfau,
  • Bert Hecht,
  • Kirill I. Bolotin,
  • Stephanie Reich and
  • Katja Höflich

Beilstein J. Nanotechnol. 2021, 12, 304–318, doi:10.3762/bjnano.12.25

Graphical Abstract
  • -mat are presented. Keywords: automated patterning; focused He ion beam; graphene; magnetic multilayers; mechanical resonator; pattern generation; plasmonic antennas; two-dimensional materials; Introduction Future breakthroughs in nanotechnology will rely on the ability to fabricate materials and
PDF
Album
Supp Info
Full Research Paper
Published 06 Apr 2021

Hexagonal boron nitride: a review of the emerging material platform for single-photon sources and the spin–photon interface

  • Stefania Castelletto,
  • Faraz A. Inam,
  • Shin-ichiro Sato and
  • Alberto Boretti

Beilstein J. Nanotechnol. 2020, 11, 740–769, doi:10.3762/bjnano.11.61

Graphical Abstract
PDF
Album
Review
Published 08 May 2020

Finite-size effect on the dynamic and sensing performances of graphene resonators: the role of edge stress

  • Chang-Wan Kim,
  • Mai Duc Dai and
  • Kilho Eom

Beilstein J. Nanotechnol. 2016, 7, 685–696, doi:10.3762/bjnano.7.61

Graphical Abstract
  • range of nanomechanical resonator is attributed to the fact that the scaling down of a mechanical resonator leads to an increase of its resonant frequency. Specifically, the resonant frequency (ω) of a nanomechanical device is inversely proportional to the square root of its length (L), i.e., . The high
PDF
Album
Full Research Paper
Published 09 May 2016
Other Beilstein-Institut Open Science Activities